The Effects of Chronic Electrical Stimulation on Laryngeal Muscle Physiology and Histochemistry

David L. Zealeara, Cheryl R. Billantea, Cheerasook Chongkolwatanac, Young S. Rhoa, Abdul-Latif Hamdana, Garrett D. Herzonb
aDepartment of Otolaryngology, Vanderbilt University, Nashville, Tenn., and
bDepartment of Otolaryngology, Northwestern University, Chicago, Ill., USA;
cDepartment of Otolaryngology, Siriraj Hospital, Bangkok, Thailand

\textit{ORL} 2000;62:81-86 (DOI: 10.1159/000027722)

\textbf{Abstract}

The present study examined the effects of functional neuromuscular stimulation (FNS) on posterior cricoarytenoid (PCA) muscle physiology and histochemistry. In 4 canines, 10 cm of the recurrent laryngeal nerve was resected. A patch electrode array was implanted for PCA stimulation. FNS was applied to 2 canines for a period of 4 weeks with 2 additional animals serving as nonstimulated controls. Results indicated that FNS increased PCA muscle contractility over the period of intervention but had no effect on contraction speed. FNS also protected the muscle from atrophy by preventing muscle weight loss and type 2 fiber deterioration. Finally, it rescued muscle fibers from ensuing fibrosis.

\textbf{Author Contacts}\nDavid L. Zealear, PhD
Department of Otolaryngology, Head and Neck Surgery
Medical Center North S2100, Vanderbilt University Medical School
Nashville, TN 37232 (USA)
Tel. +1 615 322 7267, Fax +1 615 343 7604, E-Mail Zealeadl@ctrvax.vanderbilt.edu